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ABSTRACT A stochastic regression model is used in mod-
eling rain rate. Under some conditions on the model parame-
ters, it is'shown that rain rate is asymptotically lognormal. An
application of the model to the GATE (global atmospheric re-
search program, Atlantic tropical experiment) data shows a
remarkable agreement between the assumed and estimated
model parameters for rain rate averaged over sufficiently
large area and a sampling interval of 15 min.

There is ample evidence based on observations that rain
characteristics tend to be approximately lognormally distrib-
uted. This observation is shared by quite a few research
workers who considered different data sets. These pertain to
the amount and duration of rainfall and to horizontal and ver-
tical cloud extent in tropical and extratropical regions under
a wide variety of convective conditions (1-4). Even more
intriguing is the fact that area averages of rain rate tend to
follow a lognormal rather than the “expected” normal distri-
bution (4). The questions are then, What makes the lognor-
mal distribution so prevalent when it comes to rain systems,
and is there any theoretical basis for these observational
findings? On practical grounds, we may ask whether it
makes sense at all to fit a lognormal distribution to rain char-
acteristics and under what conditions. This is the subject of
the present note. We will focus on the lognormality of rain
rate.

Many authors believe that the lognormal distribution is a
natural outcome of the so-called law of proportionate effect
(5). Accordingly, {X;} satisfies the law of proportionate ef-
fect if

Xj — Xj1 = X1,

where the ¢s are mutually independent and are also indepen-
dent of the X;s. While the law of proportionate effect is of
fundamental importance in motivating the lognormal distri-
bution, the independence assumption on the ¢; is quite re-
strictive and can in fact be relaxed. It is sufficient that the ¢;s
obey conditions that guarantee the asymptotic normality of
sums in terms of these variates. For this to hold, they need
not be independent and may even be dependent on the Xjs.

In the present note we discuss a certain type of dynamic
regression model that, with less restrictive conditions, helps
to explain the observed lognormality of rain rate. The model
has a strong intuitive appeal and is quite flexible in that it
requires only a few parameters that can be easily estimated
from data. Using a specific estimation procedure, the model
is fitted to the GATE (GARP—global atmospheric research
program—Atlantic tropical experiment) data. It is shown
that some requirements for asymptotic lognormality are sat-
isfied by the data. Furthermore, realizations produced by
the model appear to be very similar to those produced by
real rain-rate data.

It should be emphasized that our result is model-based and
that by itself does not constitute a proof that rain rate is pre-
cisely lognormally distributed. We merely provide reason-
able conditions that lead to lognormality, and indeed some of
our conditions are well supported by the GATE data. It
seems to us that the present approach is an improvement
over the approach that solely relies on the law of proportion-
ate effect.

A Stochastic Model for Rain Rate

To unravel the lognormal mystery, we begin with a rather
naive notion of a rain element. Conditional on rain, we con-
ceive of a rain element as a volume in space containing small
droplets of water that have the following dynamics. Let time
be discrete. At the n — 1 time step, some droplets give rise to
a new generation of droplets through a complicated physical
process, some droplets leave the volume while new ones,
called immigrants, arrive to join the droplets of the new gen-
eration. It is really a process of replacement and immigration
where the replacement refers to droplets already in the vol-
ume. The droplets are being replaced by a non-negative
number of droplets where zero could mean complete depar-
ture or emigration. Thus at time n, the number of droplets in
the volume in space is the sum of the replacement droplets
and the immigrants. Let X,,_; stand for the (random) number
of droplets in the volume at time n — 1 and suppose the ith
droplet there is replaced by Y, ; fresh droplets while I, de-
notes the number of immigrants. Then at time n, the rain
element contains

Xn-1

X, = Zl Y, + I,

(n=12..)) [1]

droplets with the convention that 3¢ = 0. For Eq. 1 to cover
dry periods and shifts from dry (wet) to wet (dry) periods,
the following interpretation is adopted. Most of the time
when it is not raining, the rain element is dry and both X, and
I, vanish. The rain element becomes active as soon as I,
admits a positive value. This sets the X,,, and hence the Y, ;,
in motion until the X, vanish. The process restarts when I,,
admits again a positive value. I, can be thought of as the part
of the process responsible for the occurrence of rain storms
while XY, ; pertains to the duration and amount of rain.

The most important parameters associated with the dy-
namic model (Eq. 1) are

EYn,i=m9EIn=)\ (n,i=1,2...).

No further assumption is needed for the present use of the
model except for Assumptions 1 and 2 below.
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When the occurrences of rain are not too frequent, we ex-
pect A\ to be small and close to zero. When it does rain, it
usually persists for a while before it stops. This means that m
should be close to 1 but still strictly less than 1. If m is great-
er than or equal to 1, the duration and amount can be explo-
sive. Thus an indication of goodness of fit of Eq. 1 to rain-
rate data is small A and m close to but smaller than unity. It is
interesting to apply the model to real data to see if these
conditions are met.

When {Y,;}, {I,} are families of mutually independent,
non-negative-integer-valued random variables, the process
{X,} is called a Galton-Watson process with immigration (6).
This type of process was introduced as early as 1915 by Smo-
luchowski (7) whose work is reported by Chandrasekhar (8).
Smoluchowski (7) used the model to study the fluctuations in
the number of particles contained in a small volume that ex-
hibit random motion. However, we do not necessarily re-
quire the Ys and Is to be independent.

There is a well-known device that transforms Eq. 1 into a
more convenient regression equation that takes into account
past values of X,, (9, 10). Let %, be the o-field generated by
the random variables (X, X, . . . , X,), and note that

EX,|Fp-1) = mX,—; + \.
Define &, by the difference
&n = Xp — E(X,|Fp-1),
and write Eq. 1 as

X, =mX,_1 + A + &, [2]

Then {X,} is seen to be a stochastic difference equation
where ¢, is a martingale difference (11); i.e., &, is %,-mea-
sureable and E(e,|%,-1) = 0 for every n. An important ex-
ample is the case of independent ¢, with mean 0, which is
not required here. Other than its formal importance as ex-
pressed in Eq. 2, martingale differences follow the central
limit theorem under quite general conditions.

Since X, refers to the density of droplets in the rain ele-
ment, it is related to the rain rate. But multiplication of Eq. 2
by a constant leaves the model intact, and we can actually
think of X, as representing rain rate. We, therefore, model
rain-rate dynamics by Eq. 2 where X, admits only non-nega-
tive values.

Continuity Assumption

In its present form, Eq. 2 is a fairly general model that could
represent a wide range of physical and statistical processes.
To ensure the lognormality of X,, some more assumptions
are needed.

Let {X,}, where n = 0, 1, . . ., be the stochastic process
(Eq. 2) that stands for the rain-rate process at a given rain
element. Assume that the X,, X;, X3, . . . are readings at
time 0, T, 2T, . . . , where the sampling interval T is small.
The main assumption we shall adhere to is that of continuity:
when the sampling interval T is sufficiently small, we require
that, conditional on rain, X, and X,,_; be close to each other
as is the case with many continuous phenomena in nature.
This assumption is reasonable when X, represents the aver-
age rain rate over a sufficiently large area sampled at short
time intervals. For normality we also require the sum of
squares of the ¢, to explode. More precisely, conditional on
rain (i.e., positive X,s) we assume the following.

AsSUMPTION 1. [X; — Xi_| << Xj-3.
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1 n
ASSUMPTION 2. ~ > El(&i/Xi—)!|Fi—1] = 2 > 0,
i=1
a.s.(almost surely) (n — ).

Since E(g;/X;—1|%i—1) = 0, and since by Assumption 1,
£;/X;-1 is essentially bounded as m — 1 and A — 0, it follows
that (12, 13)

LS /Xy <5 MO,
Va

(n— ).

Asymptotic Lognormality of Rain Rate

Let x[A] be the indicator of the event A, and define §, by
8 = (Xn = Xp-1)/(Xp-1 + X[Xn-1 = 0]).

Then Eq. 2 can be written as

X, =0+ 8)X-1+ N+ &) X[Xn—l =0]. [3]

Thus, conditional on rain (i.e., Xy, X3, X3, . . ., all positive),
it follows that
X, =1+ 8)A+ 8- ...A+ &)X, (4]
from which we obtain by Assumption 1 that
log(X,/Xo) = 2. &, [5]

or

n

10g(X,/Xo) + Z [ = m) = NXi) = Zl &/Xi-y.  [6]

Therefore, for m sufficiently close to 1 and A close to 0, As-
sumptions 1 and 2 imply that for large n

WWn n vn
(‘%) [1+(1—m)—%ZL] ~N@©O, 3, M

where /\(0, c?) denotes the lognormal distribution with pa-
rameters 0 and ¢? (5). When m — 1 and A — 0, we obtain the
useful approximation

X, 1Vn
()70) ~ A, Ad. (8]

The 0 parameter is expected if we assume that X, for large n
is independent of X, and that the two are identical\l/z distrib-
uted. Under these conditions both X¥V" and X¥V” are as-
ymptotically (u, c2/2) for some u (5).

Statistical Estimation of m and A

A great deal of the foregoing discussion depends on m being
close to but strictly smaller than 1, and \ being positive but
close to 0. To verify these conditions, the parameters should
be estimated as precisely as possible. Fortunately, this esti-
mation problem is a special case of a general problem inves-
tigated in detail by Lai and Wei (11) who give conditions
under which the least squares estimates converge almost
surely to the respective parameters. Winnicki (10) has sug-
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gested that m and \ should be estimated from the weighted
model

Xn/(Xn—l + 1)1/2 = an—l/(Xn—l + 1)1/2
+ M (Xpoy + D2 + &, 91

where & = &,/(X,-1 + 1)V2, by minimizing the sum of
squares of the &f. The estimates obtained in this way are
called weighted least squares and are shown, under some
conditions, to be superior to the ordinary least squares when
m is close to 1. Now, the Lai and Wei theory (11) can be
applied to the stochastic regression model (Eq. 9), since &} in
Eq. 9 is still a martingale difference. This is done next.

Denote the weighted least squares estimators by % and A,
and the design matrix by X,. Then

X1/(X, +)1?
Xo/(X, + D2

1/ + DV
/X, + D2

X,/X, + D 1/(X, + D2

Define a 2 X 2 matrix A by, A = X;, X,, and let Apmin(n) and
Amax(n) be, respectively, the smaller and larger eigenvalues
of A. Then the relevant result of Lai and Wei (11) can be
stated as follows, assuming model Eq. 9. Assume

(i) sup E(|&}]|*F.-1) < < a.s. for some a > 2,

and that

(if) Nmin(n) = =, such that as n — o,

log Amax(n) = O[Amin(n)]  a.s.
Then
(i, N) = (m,\)  a.s.

Thus, when conditions i and ii are satisfied, the result guar-
antees a strong sense of convergence of the weighted least
squares estimates. The estimates themselves are given in ref.
10 as

n

2. Xi 2 /Xy + 1) = 2. Xi/(Xiy + 1)

’ﬁ = n n 9’ [10]
(X + D) 2 1/Xiy + 1) — n?
= i=1

n

—

1

M:

Xi

i=1 i

Xi/Xi1+ 1) - ; Xizi Xioi/Xi-1 + 1)

A=

’

(1]

1
Zl Xicy + 1) 2 /Xy + 1) — i
= i=1

i

where n is the series size.

Since observed rain rate is finite, condition i is automati-
cally satisfied. To verify condition ii analytically is difficult
in general, but it can be verified from data. The rain-rate data
we have in mind are described in the next section. For rain-
rate averages obtained from squares of 32 X 32 km? at 15-
min intervals, the results from a typical time series are given
in Table 1. The series size ranges from n = 100 to n = 1700,
and it is seen that condition ii is satisfied since Apin(n) tends
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Table 1. An example where condition ii is satisfied

n Amin(1) Amax() [10g Amax(7)]/Amin(n)
100 6.368 97.212 0.719
200 53.972 185.318 0.097
400 108.249 351.806 0.054
600 142.773 533.428 0.044
800 151.526 722.730 0.043
1000 421.242 901.590 0.016
1200 438.366 1084.106 0.016
1500 475.987 1359.853 0.015
1700 514.737 1540.269 0.014

The rain-rate series are sampled every 15 min over a square of 32
X 32 km?,

to infinity faster than log[Amax(n)]. Similar results were ob-
tained for other time series and so, for all practical purposes,
the door is now open to the actual estimation of m, \ using
these data.

Application To GATE Data

We applied the model to rainfall data collected during
GATE. GATE was conducted in the summer of 1974. During
roughly three triweekly periods, detailed rainfall measure-
ments from rain gauges and radars on an array of research
vessels were made over an area called the B-scale. The B-
scale encompasses an area of about 400 km in diameter. Ar-
kell and Hudlow (14) composited the radar ship data and pre-
sented 15-min radar reflectivity scan data. The radar reflec-
tivity data are converted to rain rates that are binned into 4 X
4 km? pixels in ref. 15. This data set is probably as yet one of
the most extensive rainfall measurements made over the
oceans.

Time series of rain rate for individual pixels (4 X 4 km?
resolution) and for area averages 10 X 10 pixels (or 40 x 40
km?) have been extracted from the first triweekly period in
GATE (called phase 1). The parameters of the model are es-
timated by the method of weighted, least squares described
above. Table 2 gives the estimated m and X for 10 X 10 pixel
arrays and for individual pixels situated at the center of the
GATE area.

The results for 20 time series obtained from large area av-
erages of 10 x 10 pixels are shown in Table 2. For each time
series m and \ are estimated using Eqs. 10 and 11. The esti-
mated m are very close to but less than 1 while A is quite
small. We see that, for large area averages sampled (really
visited!) at T = 15-min intervals, the results are satisfactory
and so a lognormal fit makes good sense.

m A

1.00 -0.40
0.98 0.30
0.96 0.20

0.94 0.10

Pixel size. km

Fic. 1. Curve a, the monotone increase in 7, and curve b, the
monotone decrease in X as functions of the pixel size (square root of
the area).
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Table 2. Pairs of estimates (1, A) for 40 x 40 km? and 4 X 4 km? pixels obtained from 20 time series in the center of the GATE area

40 x 40 km? pixel

4 x 4 km? pixel

0.98, 0.05 0.97, 0.05 0.92, 0.09 0.97, 0.05 0.96, 0.07
0.98, 0.07 0.99, 0.05 0.98, 0.05 0.98, 0.07 0.98, 0.08
0.98, 0.08 0.99, 0.06 0.99, 0.06 0.99, 0.06 0.99, 0.07
0.98, 0.08 0.98, 0.08 0.99, 0.06 0.99, 0.08 0.99, 0.07

0.93, 0.40

0.94, 0.38 0.94, 0.41 0.93, 0.50 0.90, 0.68
0.85, 0.51 0.91, 0.40 0.93, 0.37 0.94, 0.38 0.94, 0.42
0.88, 0.34 0.92, 0.32 0.95, 0.22 0.94, 0.34 0.90, 0.61
0.88, 0.38 0.89, 0.39 0.94, 0.21 0.91, 0.37 0.92, 0.50

For individual pixels (4 X 4 km?) m is still fairly large al-
though not as close to 1 as in the 10 X 10 pixel array case, but
\ is relatively large as seen from Table 2. The reason for this
can be attributed to the 15-min sampling interval: for smaller
pixels we need to sample more often than 15 min to achieve
results similar to those for large pixels. This suggests that the
lognormal limit is approached for large aggregates at the 15-
min sampling rate, and more generally, that there exists a
time scale that corresponds to a spatial scale. This depen-
dence of the model parameters on the averaging area can be
seen very clearly from Fig. 1 where r and \ are given as a
function of the pixel size (i.e., the averaging area) while the
sampling interval is fixed at T = 15 min. The pixel sizes ex-
amined are 4 X 4,8 X 8, 16 X 16, 24 X 24, 32 x 32,40 X 40,
and 352 x 352 km?. Thus our theoretical considerations sug-
gest that lognormality of positive rain rate can already be
observed fairly closely by averaging over pixels whose area
is roughly as small as 40 x 40 km? where the sampling fre-
quency is 15 min. This finding is enhanced by a histogram
plot in Fig. 2 derived from 53,600 GATE pixels of 40 x 40
km?. The figure displays the distribution of the area averages
of positive rain rate on a logarithmic scale. The distribution
appears to be fairly symmetric in support of the above dis-
cussion. A corresponding histogram on a linear scale togeth-
er with a matched theoretical histogram from the lognormal
distribution A\ (—1.438, 3.614) are shown in Fig. 3. Unfortu-
nately, we cannot attach to this fit the usual statistical mea-
sures of goodness of fit due to the high degree of dependence
in the data.

Simulation Versus Real Data
We end this note with a short graphical comparison between

a time series from Eq. 1 and a typical time series from the
GATE data. It should be noted that in the foregoing discus-

600 T T T

P =0.459

g

I
=

|

Number of pixels

g
|

logo rain rate (mm/hr)

FiG.2. A histogram of log;, of the rain rate obtained from a large
number of 40 X 40 km? GATE pixels.

sion we made no restrictions on the Ys and Is in Eq. 1 except
for the requirements that they be non-riegative integers. In
fact Eq. 2 is a more general model since even this last restric-
tion is removed. Thus, if Eq. 1 is capable of producing real-
izations that resemble real rain-rate datd, this shows all the
more the adequacy of Eq. 2 that is the model we used all
along in the foregoing discussion.

Now, there are many ways to simulate Eq. 1. One simple
and fast way is to take the Ys and Is as independent Poisson
random variables with parameters m and X, respectively. By
this process we generated the time sériés in Fig. 4B. Fig. 44
shows a typical time series from GATE that constitutes 100
hr. The sudden bursts of rain storms, duration, intensity, de-
cay, and inter-arrival times between storms in the real and
simulated realizations are quite intriguingly similar.

Summary

The puzzling experimental fact that rain rate tends to follow
a lognormal distribution was explained with the aid of a mod-
el. Accordingly, under some conditions, as a rain storm de-

A
1.324

0.22f
0.09F —l—,
| - J

B
1.305

Height, arbitrary units

0.246}

0.094 L

12 4 6 8 10 20 '
Rain rate, mm/hr

FiG. 3. A histogram (A) of area averages of rain rate obtained
from a large number of 40 x 40 km?> GATE pixels, and a correspond-
ing (B) lognormal histogram from /\ (—1.438, 3.614).



Applied Mathematical Sciences: Kedem and Chiu

A

2o Gate time series

10
- »
i m
E Mn il & 1
: 400
&
S
‘% Simulated rain rate
20

m =099, \ =0.04
10
[ AN

400
Time, hr

FiG. 4. The 400 observations from a typical GATE time series
taken every 15 min where the pixel size is 32 X 32 km? (4), and 400
observations from Eq. 1 with m = 0.99 and A\ = 0.04 (B).

velops, rain rate tends to follow a lognormal distribution.
The conditions on the model parameters are shown to be
satisfied fairly closely by the GATE data for time series that
consist of rain-rate averages over sufficiently large pixels
observed every 15 min. A variant special case of the model is
capable of producing realizations that appear to be very simi-
lar to real rain-rate time series. Another fact is that the eigen-

Proc. Natl. Acad. Sci. USA 84 (1987) 905

value conditions needed for the almost sure convergence of
the weighted, least squares estimates are well satisfied by
the GATE data. In light of all these consistencies, it is hoped
that the model (Eq. 2) can serve in settling other intriguing
facts about rain.
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