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Abstract A GIS-based decision support system, which incorporates local topographic

and rainfall effects on debris flow vulnerability is developed. Rainfall at a scale compatible

with the digital elevation model resolution is obtained using a neural network with a wind-

induced topographic effect and rainfall derived from satellite rain estimates and an

adaptive inverse distance weight method (WTNN). The technique is tested using data

collected during the passage of typhoon Tori-Ji on July 2001 over central Taiwan.

Numerous debris flows triggered by the typhoon were used as control for the study. Our

results show that the WTNN technique outperforms other interpolation techniques

including adaptive inversed distance weight (AIDW), simple kriging (SK), co-kriging, and

multiple linear regression using gauge, and topographic parameters. Multiple remotely-

sensed, fuzzy-based debris-flow susceptibility parameters are used to describe the char-

acteristics of watersheds. Non-linear, multi-variant regressions using the WTNN derived

rainfall and topography factors are derived using self-organizing maps (SOM) for the

debris flow vulnerability assessment. An index of vulnerability representing the degrees of

hazard is implemented in a GIS-based decision support system by which a decision maker

can assess debris flow vulnerability.
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1 Introduction

Landslides are serious hazards common to many countries. While single-slope scale

landslides cause damages in limited areas, wide-mountainous scale landslides, which move

rapidly and occur mostly in mountainous areas, can cause significant fatalities and property

damage. For example, the landslide that occurred on January 10, 2005 in the community of

La Conchita in Ventura County, California killed 10 people and destroyed or seriously

damaged 36 houses. Thousands of people died in the Leyte province of the Philippines on

February 16, 2006 because of a massive debris flow event triggered by heavy rainfall.

Globally, landslides cause billions of dollars in damages and thousands of deaths and

injuries each year. A recent world disaster report by the International Federation of the Red

Cross and Red Crescent Societies (2001) shows that flooding, avalanches, and landslides

account for 42% of global incidence of natural disasters. In countries like Japan, India,

Italy, Taiwan, and USA, the average yearly economic losses due to landslides amount to

billions of US dollars. (Metternicht et al. 2005) In countries like Canada, Nepal and

Sweden, the losses are in the millions (Metternicht et al. 2005).

A debris flow is usually triggered by heavy rainfall over mountainous areas. It is made

up of mud, soils, gravels, rocks, and water. Solids or soils on steep slopes slide downward

due to weathering processes and mechanical influence such as gravity or earthquake.

Heavy rainfall facilitates this process by increasing pore water pressure, seepage force, and

reducing effective stress of soils (normal stress carried by soil particles at the points of

contact). Casagrande (1936) explained this mobilization as follows: if a dense soil is

continually sheared, it will dilate and eventually attain a critical-state porosity. Loose soils

will contract to reach the critical-state porosity. In both cases, the effective stress of soils

can be regarded as Bingham viscoplastic material that denotes transition between solid-like

and liquid-like behavior (Gabet and Mudd 2005). Hillslope materials can be mobilized by

heavy rainfall and brought downstream along gullies with high flow velocity in the form of

debris flows. Debris flows are more dangerous than floods because they typically carry

large boulders and debris that can impact and destroy structures in their path. They can also

dam channels and cause water to flood into areas that are not normally accessible by

floodwater (Jan 2000).

Debris flows are closely related to topography and heavy rainfall (Lin and Jeng 2000;

Lin et al. 2003; Tseng 2004; Wen and Aydin 2005). The goal of this research is to assess

debris flow vulnerability based on these two factors at same geographic locations. A

number of spatial interpolation techniques are examined for rainfall estimation. These

techniques include inverse distance weighting method (IDW), adaptive inverse distance

weighting method (AIDW) and kriging of existing gauge network, co-kriging and multiple

linear regression (MLR) of gauge, and topographic parameters.

Local interaction between wind flow and topography can have a large effect on the local

rainfall. The wind-topography interaction on rainfall is examined using a Wind-Topog-

raphy neural network (WTNN). The local rainfall and multiple topographical factors are

integrated into a debris flow vulnerability assessment model. Results of this research can be

further developed into a more user-friendly GIS decision support system to facilitate

hazard mitigation.

The success of vulnerability assessment of debris flow is mostly governed by the

accuracy of rainfall measurements (Tseng 2004; Huang 2002). There are limitations in, and

controversies among, different rainfall estimation methods. Lin et al. (2003) and Cheng

et al. (2005) estimated the amount of rainfall that triggered a debris flow event based on the
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rainfall amount recorded by the nearest rain gauge. Obviously, this assumption is not

persuasive. Tseng (2004) applied inverse distance weighting (IDW) method to improve

rainfall estimates. This method was first proposed by the US National Weather Service in

1972 and has been extensively applied to rainfall estimation. It is fast and easy to compute.

However, IDW is in general considered to be inferior to other stochastic approaches such

as kriging, co-kriging or, linear regression methods (Goovaerts 2000; Dingman 2002).

To avoid costly and extensive field trips to maintain and gather data from gauges,

especially in mountainous areas, remote sensing data provide a nice alternative method for

acquiring rainfall data. Tseng (2004) collected historical data of debris flows over the

central part of Taiwan and proposed fuzzy-based equations with input variables that are

obtained from high-resolution digital elevation model and high-resolution satellite imagery.

Existing vulnerability assessment methods for debris flows are either based on threshold

values with arbitrary numbers (Lin et al. 2002) or principal component analysis (Jakob and

Weatherly 2003). Evidence shows that self-organizing maps (SOM) may perform better

(Giraudel and Lek 2001; Leflaive et al. 2005). This research evaluates the performance of

SOM, which has been proven to be an effective tool in dealing with classifying groups

(Chon et al. 1996; Levine et al. 1996).

In this paper, we review existing debris flow research and traditional spatial interpo-

lation techniques for rainfall interpolation. Next, we describe spatial interpolation tech-

niques for rainfall and methods to obtain multiple topographical factors. Lastly, we

describe and discuss our results on estimation of optimal rainfall interpolation and the use

of multiple topographical factors in vulnerability assessment of watersheds in central

Taiwan.

2 Literature review

2.1 Landslide analysis

Studies on landslides can be generally divided into two categories: the single-slope scale

and regional scale analyses. Studies on single-slope scales focus on evaluating the possi-

bility of landslide occurrence for individual slopes. Studies on a regional scale mainly deal

with multiple or massive landslides, including debris flows. There are well-developed

approaches to assess landslide vulnerability. These approaches can be classified into four

broad categories (Ermini et al. 2005): (a) landslide inventories; (b) heuristic methods; (c)

deterministic approaches and (d) statistical analyses.

The landslide inventories and heuristic methods are typically based on field and remote

sensing investigation to produce landslide hazard maps. These two methods suffer signif-

icantly from unreliable quality control due to a high-level of subjectivity and the varying

experiences of the investigators. (Ermini et al. 2005) Deterministic methods, which are

widely applied in geotechnical engineering, aim at evaluating the likelihood of landslides

based on factor of safety analysis. The factor of safety is based on geotechnical data which

include soil properties (i.e., soil unit weight, internal friction, cohesion, pore pressure) and

geomorphic properties (i.e., slope angle, slope height, depth of soil layer, and groundwater

seepage) (Taylor 1937; Bishop 1955; Bishop and Morgenstern 1960). In general,

deterministic approaches are reliable only when failure mechanisms are fully understood

and quality geotechnical data are available. For most cases, especially in mountainous areas,

the in situ sampling and laboratory testing of these data is costly and sometimes impractical.
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To circumvent the difficulties of acquiring in situ data, remotely-sensed data and

Geographic information system (GIS) are becoming more used (Clerici et al. 2002;

Cheng 2003; Jakob and Weatherly 2003; Tseng 2004; Ayalew and Yamagishi 2005,

Cheng et al. 2005, Luino 2005; Malet et al. 2005; Shakoor and Smithmyer 2005; Wen

and Aydin 2005). GIS provides a platform for spatial data inventory and manipulation.

Remote sensing data can be transformed into thematic layers and processed by grid-

based computation with other gird format data, such as digital elevation model (DEM),

in a GIS environment.

2.2 Debris flows

Debris flows are mixtures of water, air, clay minerals, and granular solids with a wide

variety of sizes. Each component affects the properties of debris flows. Debris flows can

travel with high velocity (tens of meters per second) on slopes ranging from 68 to 308.
Simple, idealized theoretical models have been developed to analyze debris flows

according to observations of small experimental flows and natural debris flow deposits

(Johnson 1965). Sidle et al. (1985) identified five natural factors that are most influential to

debris flows:

1. Soil/rock properties, especially the hydrologic and mineralogical conditions that affect

engineering soil/rock behavior and strength properties of colluvium;

2. Geomorphology, including the geologic and tectonic setting, slope gradient, and shape

of watersheds;

3. Surface, subsurface, and rainfall hydrology;

4. Vegetative cover, including the reinforcing effect of root systems;

5. Seismicity, especially the potential for liquification of marginally stable soils on steep

slopes.

Hsu and Lu (2004) showed that in Taiwan, debris flows take place on converged convex

slopes that usually have a bowl-shaped appearance, with a constriction of 4–6 m wide

below the sliding area. The scale of the slide and the size of the sliding area are all

significantly greater than that of the other slope movements. His study also stressed that

watershed size is significantly related to debris flows. Liu (2001) analyzed factors that

contribute to debris flows in central part of Taiwan by principal component analysis (PCA).

Factors are watershed area, length of stream, shape factor, vegetative cover, and slope of

stream. His results show that watershed area, length of stream and vegetative cover sig-

nificantly influence debris flows.

Lunio (2005) studied three debris flow cases in northern Italy: the July 1987 event in

Valtellina, the November 1994 event in the Tanaro river basin, and the October 2000 event

in the Aosta Valley. The region is geomorphologically heterogeneous with high mountains,

wide valleys, gentle hills, and a large plain forming a highly varied landscape that influ-

ences climate in the area. These characteristics are very similar to our study area, the

central part of Taiwan. The results showed that the quantity of debris flows triggered by

rainfall was related not only to morphological and geological characteristics, but also to the

intensity and spatial distribution of rainfall.

This paper considers the above debris flow characteristics and uses them as input

variables for vulnerability assessment. The detailed discussions of these input variables

will be on Sect. 3.1.2.

Nat Hazards

123



2.3 Rainfall analyses

Heavy rainfall is one of the factors that will initiate the instability processes for debris

flows. It causes soil saturation and a rise in pore-water pressure (Clerici et al. 2002). In

un-gauged watersheds, methods to estimate rainfall using rain gauges in adjacent

watersheds are necessary. The Thiessen polygon method involves assigning the rainfall

at each location to the closest gauge measurement for subregions of polygons (Thiessen

1911). In 1972, the US National Weather Service proposed the inverse distance weight

method (IDW) by using weights inversely proportional to the squared distance between

the rain gauge and an un-gauged location (Dingman 2002). The IDW method is fast and

easy to compute, and therefore, widely used. The IDW is usually modified by a constant

power, or a distance-decay parameter, to reflect the diminishing relationship with

increasing distance. Recognizing the potential of varying distance-decay relationship

over a study area, the parameter may vary according to the spatial pattern of the sampled

points in the neighborhood. An adaptive approach suggests that the distance-decay

parameter is a function of the point pattern of the neighborhood. This adaptive spatial

interpolation method based upon IDW is called the adaptive inversed distance weighting

method (AIDW).

Geostatistical approaches such as kriging are increasingly preferred over distance

weighting methods because they establish a best linear unbiased estimate (BLUE) by

minimizing the variance of attributes of neighborhood sample points. Geostatistical

approaches have been found to provide better estimations than other deterministic meth-

ods, such as IDW (Tabios and Salas 1985; Philips et al. 1992). Lebel et al. (1987) com-

pared Thesisen’s polygon, spline fit, and kriging approaches for estimating areal

precipitation for durations of 1–24 h. Among all methods examined, kriging was judged to

be the most accurate at all gauge densities and for all durations. Borga and Vizzaccaro

(1997) compared kriging with the multi-quadratic method using various gauge densities on

Monte Grande Hill, Italy. Their results suggested that kriging is remarkably more accurate

at lower densities (less than 0.022 gauges km�2) in a 30 · 30 km2 study area. However,

Dirks et al. (1998) applied kriging, inverse distance weight, Thiessen‘s polygon, and areal-

mean methods to estimate rainfall from a network of 13 rain gauges for a small study

area of 35 km2 on Norfolk Island. He showed that kriging provided no significant

improvement over other computationally simpler methods, such as IDW, and recom-

mended that the IDW method was adequate for spatially dense networks. Kriging did not

improve on the interpolation over IDW because the network semivariogram, which pro-

vides information of the structure of spatial variability, did not reach the span of this

particular network. In other words, the unsatisfactory result of kriging was due to the

absence of prominent spatial structure that was reflected in a poorly fitted semivariogram

(Isaaks and Srivastava 1989).

Kyriakidis et al. (2001) developed a kriging-based spatial interpolation technique to

estimate rainfall. Unlike others, Kyriakidis et al. adopted the concept of simple kriging

that required a regional mean for rainfall amount and local variability. The local vari-

ability is defined by the residuals of the regional mean and sampled data. In most cases,

regional mean is not easy to obtain. However, Kyriakidis et al. (2001) assumed the

regression-based result as the regional mean and used kriging to interpolate the local

variability. Then the interpolated local variability was added to the regional mean to

complete the spatial interpolation. Kyriakidis et al. (2001) also addressed the atmospheric

variables that are typically available at a very coarse resolution, but provide a general

coarse-scale state of the atmosphere, which is expected to bear some relevance to
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observed precipitation at the local scale. However, coarse-scale data may fail to reflect

local variability. As one can expect, results of the interpolation are with coarse resolution

because the results are constrained by the relatively low resolution of the input meteo-

rological variables. Therefore, those results may not be appropriate for estimating rainfall

at the local scale for debris flows susceptibility analysis. To overcome this limitation,

this study exploits the use of space-borne remote sensing rainfall data as the regional

mean rainfall, and adopts interpolated results by AIDW as local variability to fit

Kyriakidis’ model.

The orographic effect causes air to be lifted or lowered vertically, and condensation due

to adiabatic cooling or heating tends to modify precipitation. Correlation between rainfall

and elevation ranges from 0.33 to 0.83 over the Algarve’s mountains in the southern most

region of Portugal (Goovaerts 2000). Hevesi et al. (1992) reported a significant correlation

(R = 0.75) between average annual precipitation and elevation recorded at 62 stations in

Nevada and southern California.

To incorporate elevation information for rainfall estimation, Daly et al. (1994) proposed

the Precipitation-elevation Regression on Independent Slopes Model (PRISM), which

estimates rainfall at a DEM grid cell by establishing a regression of rainfall versus ele-

vation through moving windows. The results are better than that of kriging, de-trended

kriging, and co-kriging (with DEM). Daly et al. (1994) pointed out two limitations of

PRISM. For regional applications in mountainous terrain, PRISM performs consistently

well only when the DEM has a resolution better than approximately 6 km. Due to the

moving window technique that smoothes topography to increase the correlation between

precipitation and elevation, PRISM has limited capability over rugged terrains. Those two

limitations illustrated that PRISM is more appropriate for larger geographical coverage or

global rainfall studies.

Goovaerts (2000) reviewed the use of co-kriging to incorporate elevation into the

mapping of rainfall. His results, however, show that the interpolation errors from

co-kriging are larger than those of kriging. The reason of the poor performance is that if

the primary and secondary variables are co-located and the auto- and cross-variograms are

proportional to the same basic model, then the co-kriging method will not improve the

estimation (Isaaks and Srivastava 1989), i.e., benefit of co-kriging is marginal if the

correlation between rainfall and elevation (or other environmental description) is small.

Isaaks and Srivastava (1989) suggested that co-kriging rainfall and elevation does not seem

to be a good method for rainfall estimation.

Orographic rainfall is modified by the surface wind. In general, there is rainfall

enhancement on the windward side and a decrease in rainfall on the leeward side of a

mountain. The wind factor has been considered by a number of researchers (Kyriakidis

et al. 2001; Bindlish and Barros 2000; Prudhomme 1999). Prudhomme (1999)

suggested that the variables aligned to the prevailing wind direction are the most

significant for estimating rainfall. Kyriakidis et al. (2001) included wind information as

a predictor to estimate rainfall. Besides regression models, artificial neural networks

(ANN) were used in rainfall analysis by treating wind information as one of the input

variables (Navone and Ceccatto 1994; Hsu et al. 1997; Luk et al. 2001). Ramirez

(2005) applied ANN to construct a nonlinear map between wind derived from a

regional ETA model and surface rainfall data in the region of Saõ Paulo State, Brazil.

Comparison with a multiple linear regression model showed better results than ANN.

In this paper, we improved on Ramirez’s work by proposing a wind-topographic model

using ANN. Inputs to the ANN are rainfall and the combined effect of wind and

topography.
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2.4 Debris flow vulnerability

Since debris flow is a complex phenomenon in nature, a versatile debris flow vulnerability

model should be able to fully accommodate their complicated mechanisms. This paper

aims at developing a hazard assessment model with input variables that can be derived

easily and efficiently with low cost. Hürlimann (2006) suggested a series of multidisci-

plinary approaches for debris flow hazard assessment. There were three steps in the

assessment: geomorphologic and geologic analysis, runout analysis, and hazard zonation.

An exhaustive field surveys and interpretation of aerial photographs and the study of

historic data are required to finish the first step. Input parameters to the runout analysis

included topographic profile, channel shape and width, rheologic parameters, and the initial

volume. Two parameters for the rheologic model are the dry friction coefficient and the

Chezy-like turbulent friction term. A hazard matrix can be used to analyze these param-

eters to assist the process of hazard zonation. Generally speaking, Hürlimann’s method

does not fit as an ideal hazard assessment model because it relies heavily on field surveys

and laboratory examination. The hazard matrix is also too imprecise to define degrees of

hazard by just assigning threshold values.

On the broader issue of landslide assessment, Komac (2006) created a mass landslide

susceptibility model based on statistical relationships and concluded that multivariate

statistics are most effective in developing a mass landslide susceptibility model. Ayalew

and Yamagishi (2005) compared two vulnerability assessment methods: the analytical

hierarchy process (AHP) method and the logistic regression method. The differences

between AHP and logistic regression are relatively minor when the number of suscepti-

bility classes is small. However, when the number of susceptibility classes is large, the

logistic regression map tends to outperform AHP. Besides multivariate statistical methods,

artificial neural networks are also used in vulnerability assessment. ANN tends to out-

perform multivariate statistics (Pérez-Magariño 2004; Giraudel and Lek 2001; Leflaive

et al. 2005). Gómez and Kavzoglu (2005) used land cover, slope angle, slope aspect,

elevation, topographic wetness index, lineaments, and soil types as input to an ANN to

access landslide vulnerability zonation in the Jabonosa river basin, Venezuela. Their

results show a 90% overall accuracy using the ANN technique. Ermini et al. (2005) utilized

ANN with input variables including lithology, land cover, slope angle, curvature, and

up-slope contribution area, and found prediction made by ANN were satisfactory in the

Riomaggiore catchment area, Italy. Since the applications of using ANN to assess landslide

events seem very promising in previous studies, this paper will evaluate the effectiveness

of using ANN in debris flow assessment.

Specifically, we will use self-organizing maps, a type of ANN, to conduct a debris flow

vulnerability assessment in central part of Taiwan. We will improve on Ramirez’s work by

proposing a wind-topographic model using ANN with triggering rainfall and debris flow

susceptibility factors as inputs. The methodology, study area, and data used are described

below.

3 Methodology, study area, and data

3.1 Methodology

The methodology can be divided into three parts: (1) triggering rainfall, (2) debris flow

susceptibility factors, and (3) vulnerability assessment
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3.1.1 Triggering rainfall

We assume that debris flows are triggered by rain falling on a particular DEM grid cell.

The amount of rainfall is estimated by spatial interpolation made from nearby rain-gauge

data. Three spatial interpolation techniques, adaptive inverse distance weight method

(AIDW), simple kriging method (SK), and wind-topography neural network method

(WTNN) were tested. AIDW improves inverse distance weight (IDW) method by

regarding distance decay parameters as variant instead of constant; SK incorporates remote

sensing information as regional mean and interpolated rainfall data as the local variant;

WTNN is based upon a back propagation neural network that provides a platform for the

interactions among wind, topography, and rainfall.

Adaptive inverse distance weight method (AIDW). The IDW is a straight-forward and

computationally simple method. It has been regarded as one of the standard spatial

interpolation procedures in geographic information science (Burrough and McDonnell

1998; Longley et al. 2001) and has been implemented in many GIS software packages.

Formally, the IDW method is used to estimate the rainfall value (ŷ) at location S0, given

the observed rainfall values y in sampled locations Si in the following manner:

ŷðS0Þ ¼
Xn

i¼1

kiyðSiÞ ð1Þ

Essentially, the estimated value at S0 is a linear combination of weights (ki) and the

observed y values at Si where (ki) is often defined as

ki ¼ d�a
0i =

Xn

i

d�a
0i ð2Þ

where

Xn

i

ki ¼ 1

In Eq. 2, the numerator is the inverse of distance (d) between S0 and Si raised to a power a,

and the denominator is the sum of all inverse distance weights for all locations so that the

sum of ki for an unsampled point will be unity. The a parameter specifies the geometric

functional form of the weight, such that if a is larger than 1, the so-called distance decay

effect will be more than proportional to a given increase in distance. Small a tends to

average Si, whereas large a tends to give larger weight to nearer points and increasingly

ignores points further away. When a ? 0

ki ¼ 1=n

ŷðS0Þ ¼
Xn

i¼1

kiyðSiÞ

¼
Xn

i¼1

1

n
yðSiÞ

ð3Þ

When a ? ?
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ki ¼
I i ¼ j ðLj ¼ minfLigÞ
0 i 6¼ j

�

ŷðS0Þ ¼
Xn

i¼1

kiyðSiÞ

¼ yðSjÞ
ð4Þ

According to the First Law of Geography (Tobler 1970), ‘‘everything is related to

everything else, but near things are more related than distant things.’’ The main objective

of AIDW is to use a small a to average the clustering points with similar attributes (Eq. 3),

and assign a large a for neighboring points in a dispersed pattern (Eq. 4).

To guide the selection of a based upon the clustering pattern, we rely on concepts of

nearest neighbor statistics (Wong and Lee 2005) The expected nearest neighbor distance

for a random pattern can be calculated as

rexp ¼ 1=ð2ðn=AÞ0:5Þ ð5Þ

where n is the number of total points in the study area, and A is the area of the study

region.

With both the observed and the expected nearest neighbor distances, the nearest

neighbor statistic, R, can be expressed as:

R ¼ robserved=rexpected ð6Þ

The smaller the R, the more clustered the pattern, and vice versa.

Here, robserved is calculated for the set of five points closest to the unsampled location.

The expected nearest neighbor distance for a random pattern (rexpected) is a constant over

the entire area, therefore, the R value is governed by the observed average nearest neighbor

distance, robserved.

Instead of using R value, we normalize the R value into a lR value, 0 � lR � 1, where:

lR ¼
0; RðS0Þ<Rmin

0:5þ 0:5sinðp=RmaxÞðRðS0Þ � RminÞ; Rmin � RðS0Þ � Rmax

1; Rmax<RðS0Þ

8
<

: ð7Þ

Rmin refers to a local nearest neighbor statistic value below which lR is set to zero. Rmax

refers to a local nearest neighbor statistic value above which lR is set to one. Empirically,

Rmin and Rmax can be set to the minimum and maximum, respectively, of R(S0) for all

locations of S0, the sampled points. Rmax and Rmin are determined by the global statistics of

the entire sample of points.

We evenly divided {lR| lR(0,1)} into five categories (0.1, 0.3, 0.5, 0.7, 0.9) and

assigned a distance decay value to each category. The extreme clustering (lR = 0.1) and

dispersing (lR = 0.9) categories were assigned the minimum and maximum distance decay

values, whereas for the others (lR equals to 0.3, 0.5 and 0.7) the distance decay values are

linearly selected between the maximum and minimum distance decay values. The trian-

gular weighting function (Fig. 1) determines the distance decay parameters. The deter-

mination is based on linear interpolation. To illustrate the concept, if R(S0) for an

unsampled location is 0.8, the corresponding lR is 0.35 from Eq. 7. According to the
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triangular weighting function in Fig. 1, a lR of 0.35 corresponds to two points (0.3 for

category III and 0.7 for category II). These values are used as the weights to be applied to

the corresponding a assigned to the categories to derive the final a value. As a result, the

final a is (0.7 · 0.5 + 0.3 · 1) = 0.65. Note that the sum of the two weights for any lR value

is always 1. The values of a equal to 0.1, 0.5, 1, 2, and 3, respectively, are assigned to these

categories after heuristically testing their applicability in this specific context.

Simple kriging method (SK). The simple kriging (SK) method uses rainfall values from

satellite data as the regional means and adopts results of AIDW as the local variability. The

detailed description of the procedure follows: First, random points are selected within a

satellite pixel and then each point was assigned a value, Z(ua) by using AIDW. The

satellite remote sensing information is regarded as the local mean, m̂Sat. The residuals of

satellite remote sensing information and AIDW within a satellite pixel are obtained by

subtracting m̂Sat from Z(ua). To ensure that the residuals of m̂Sat and Z(ua) are unbiased and

variance minimized, ordinary kriging is used. The value of un-sampled locations within a

satellite pixel can be expressed by

Zðu0Þ ¼ m̂Sat þ
Xn

a¼1

kOK
a ðu0Þ½ZðuaÞ � m̂Sat�

with
Xn

a¼1

kOK
a ¼ 1 and kOK

a ¼ weights ð8Þ

.

The objective of Eq. 8 is to find weights, k a
OK, that give an unbiased estimate

E½fDẐOKðu0Þ � DZðu0Þg� ¼ 0 and variancer̂2
OKðu0Þ, that is minimized by the Lagrange

parameter WOK.

r̂2
OKðu0Þ ¼ WOK � cð0Þ þ

Xn

a¼1

kOK
a cðDua � Du0Þ ð9Þ

Wind-topography model. Two different estimators of the topographic exposure to the

hypothetical wind flux are selected and modeled. Each of them is examined for eight

different directions using an azimuthal step of 458 (N, NE, E, SE, S, SW, W and NW) as

shown in Fig. 2 (Antonic and Legovic 1999). Since direction pairs that are 180 degree out

of phase give identical results with opposite signs, only four directional statistics are

needed for interpretation.

Fig. 1 Triangular Weighting Function for different degrees of adaptive distance-decay parameter
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The first estimator, Asp, is the relative aspect (r),which is the difference of angles

between the azimuth angle of hypothetical wind flux, d, and the terrain aspect, c (see

Fig. 2). The second estimator is the terrain exposure toward the horizontal component of
the wind flux, Exp(0).It is defined as the cosine of the angle a, between the terrain

orthogonal vector, v, to the direction of the (hypothetically) horizontal wind flux, m.

Expð0Þ ¼ cosa ¼ ~x �~m
j~x j j~v j ð10Þ

The second estimator Exp(0) can be computed from Eq. 11.

Expð0Þ ¼ cos a ¼ cosðlÞ sinðbÞ þ sinðlÞ cosðbÞ cosðd� cÞ ð11Þ

where l is the terrain slope and b is the elevation angle of wind flux. For the second

estimator, if horizontal wind b = 0, then Eq. 11 can be rewritten as

Expð0Þ ¼ cos a ¼ sinðlÞ cosðd� cÞ ð12Þ

These estimates are inputs to the wind-topographic model, which will be estimated by

artificial neural networks (ANNs), a relatively versatile nonlinear modeling tool, to model

wind and topography in relation to precipitation. The selected neural network model is

back propagation neural network (BPNN), which has the ability to adjust weights

Fig. 2 Illustration of wind-topography model (after Antonic and Legovic 1999)
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according to the residues of the predicted value and target value for each learning episode.

Input variables are Asp (aspect), Exp(0), elevation (Z) and results from AIDW. The rain

gauge data serve as the target values. By examining the difference between the target value

and output values, BPNN can adjust weights according to the responses from the error term

through its nonlinearly regressive behavior until the error is converged or acceptable.

Performance evaluation. The comparison between rain gauge data and interpolated

rainfall value derived from different models are evaluated by root-mean-square error

(RMSE) given by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nvald

XNvald

i¼1

ðPi � P�iÞ2
vuut ð13Þ

where Nvald is the total number of validation points. Pi is the interpolated rainfall for the

ith grid and P * i is the corresponding ith observation. About 20% of the measurement

points are kept for validation purposes. Then, Nvald = N · 20% where N is the number of

total rain gauges. The Percent Error, PE (%), is defined by

PE ð%Þ ¼ RMSE
1

Nvald

PNvald

i¼1 P�i

times; 100ð%Þ ð14Þ

3.1.2 Debris flow susceptibility factors

At a watershed scale, certain factors are favorable to debris flows. The factors we

considered are from Tseng (2004):

(1) Slope of hillslope. Slope of hillslope provides a gravitational field for mass transport

and debris flow occurrence, and governs the behavior of debris flow movement

(Tseng 2004).

(2) Vegetative cover. Loosened solids play an important role in providing material for

debris flows. The colluvial materials and talus materials accumulated in gully areas

are typically source areas for debris flows triggered by heavy rainfall. Debris flows

are often initiated in scarred terrain (Jakob 2000) and are strongly related to

vegetative cover.

(3) Area of watershed. Larger catchment areas receive larger amount of rainfall and yield

more runoff. Therefore, the likelihood of debris flow occurrence increases in relation

to the size of watershed (Vanacker et al. 2003; Hsu and Lu 2004).

(4) Soil type. Jiang (1998) classified seven soil types (meta-sandstone, shale, conglom-

erate, alluvium, sandstone, slate, sandstone, and shale) in central part of Taiwan. Each

soil type is assigned a weight to represent the vulnerability to debris flows. The larger

the weight, the more vulnerable to debris flow. Results show that sandstone and shale

is most likely related to debris flow, whereas alluvium is least likely. The weights

used for each soil type were alluvium (1.125), sandstone (1.625), conglomerate

(2.125), slate (6.5), meta-sandstone (7.125), sandstone, and shale (10).

Tseng (2004) collected historical data for those watersheds that were vulnerable to

debris flow in central Taiwan and proposed a fuzzy-logic-based equation for each topo-

graphic factor as follows.
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N1ðSÞ ¼ 1� e�0:003S2 ð15Þ

where S is the slope of hillslope in percentage, S = (Elev. at head of watershed � Elev. at

downstream terminus of watershed)/Length of watershed

N2ðRÞ ¼ 1� eð�0:6RÞ ð16Þ

where R is percentage of non-vegetation-covered area, R = (Watershed area � vegetation-

covered area)/Watershed area

N3ðAÞ ¼ f
0:02A;A � 50

1;A[50
: ð17Þ

where A is watershed area in units of hectares,

N4ðWiÞ ¼ 0:11Wi � 0:11; 1<Wi � 10

Wi ¼ 9
Xi

Xmax

þ 1 ð18Þ

where Wi is the weighting of soil types, Xi is the frequency of soil type in a watershed, Xi=

{meta-sandstone, shale, conglomerate, alluvium, sandstone, slate, sandstone and shale}

and Xmax = max{Xi}.

3.1.3 Vulnerability assessment

To prioritize watersheds for hazards mitigation, watersheds were classified according to the

degree of hazard. In this study, an unsupervised training method in an artifical neural

network (ANN), and the Kohonen’s self organizing map (SOM) classifier, which divides

the input space into a desired number of classes, were used for classification. The output

from an SOM is topologically ordered in the sense that the nearby neurons in the output

layer correspond to similar input. The Kohonen network’s ability to transform the input

relationships into spatial neighborhoods in the output neurons has been used for applica-

tions in areas such as classification, feature mapping, and feature extraction (Jain and

Srinivasulu 2006). The neurons having similar characteristics were grouped in one single

layer. For example, the neurons in an input layer received the input from an external

source, and transmit the same information to a neuron in an adjacent layer, which could

either be a hidden layer or an output layer. Each neuron in an ANN was also capable of

comparing an input to a threshold value. The input vector presented to an ANN should be

normalized between 0 and 1. The learning in the SOM was based on the concept of

clustering of input data. SOM had the ability to assess the input patterns presented to the

networks, organize itself to learn its own similarities based on the collective set of inputs,

and categorized them into groups of similar patterns. For the classification of the input

vectors, the clustering was meant to group of similar objects and separate dissimilar ones.

The SOM training started by initializing the weight vector and normalized the input

vectors. During the self-organization process, the cluster unit, whose weight vector most

closely matched the input pattern, was chosen as the ‘‘winner neuron.’’ The winner neuron

was selected based on competitive learning and similarity clustering. The minimum

Euclidian distance was adopted as the similarity rule. The winner neuron and its
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neighboring units updated their weights. The procedure is repeated by presenting all input

vectors, and convergence is achieved by fine tuning the learning rate and the size of the

neighborhood (Jain and Srinivasulu 2006).

The values of learning rate and neighborhood distance of 0.9 and 0.2 were employed in

this study to achieve convergence. Initial weights were assigned using random numbers.

Outputs are five categories of degrees of hazard.

3.2 Data and study area

The study area is located in central Taiwan, with a total area of 6,320 km2 and rain gauge

density of 0.006 gauges km�2. After the Chi–Chi earthquake struck Taiwan in 1999, the

number of landslides in this area increased from 7.1 · 106 m2 (1996–1998) to 27.5 · 106 m2

in 2001 (Lin et al. 2003). On July 29, 2001 typhoon Tora-Ji hit the study area with heavy

rainfall, caused mass landslides, and caused high economic and human losses. A total of

1972 houses were destroyed, over six million US dollars losses, and caused 43 deaths, 113

people disappeared, and 32 injured. Hourly rain gauge measurements from 39 rain gauges

maintained by the Taiwan Central Weather Bureau over the study area were collected. The

distribution of the 39 gauges is shown in Fig. 3. We randomly selected 30 gauges for the

spatial interpolation (training) process, and reserved the remaining 9 gauges for validation.

Satellite rainfall estimates were retrieved from the Tropical Rainfall Measuring Mission

(TRMM) combined instrument 2B31 algorithm (Kummerow et al. 2000). TRMM is an

international satellite designed to study rainfall systems and structures in the tropics and

sub-tropics. The TRMM rain sensors include the first space-borne precipitation radar (PR),

a TRMM Microwave Imager (TMI), and a Visible and Infrared Scanner (VIRS) (Kum-

merow et al. 2000). This paper adopts the TRMM 2B31 algorithm to produce the rainfall

information, used as the local mean for the simple kriging (SK) method. The TRMM

combined instrument algorithm (2B31) uses the PR measured radar reflectivities con-

strained by the microwave emissions measured by the TMI to produce the best TRMM

sensor rain estimate (Kummerow et al. 2000). Additionally, the PR estimates are deemed

more reliable and there is little bias between PR and TRMM Combined Instrument (TCI)

estimates (e.g., Chiu et al. 2006a and b). The TCI has a ground resolution the same as that

of PR, which is about 4 km at nadir.

A 1 · 1 km2 DEM was obtained from HYDRO1k (http://www.edc.usgs.gov/products/

elevation/gtopo30/hydro/index.html). HYDRO1k is developed by the U.S. Geological

Survey’s (USGS) EROS Data Center and provides consistent global coverage of topo-

graphically derived data sets. HYDRO1k provides a standard suite of geo-referenced data

sets at a resolution of 1 km. Terrain slope and aspect are processed by ArcGIS, a popular

GIS software package, with outputs at the same resolution.

In order to better define a rainfall event that triggers debris flows, this paper adopts the

method used by Huang (2002). Huang’s method defines the starting point of a typhoon

event when more than 4 mm rainfall accumulation is measured, and the ending point of

rainfall at the beginning of a 6-h duration when less than 4 mm rainfall accumulation is

measured. Both adaptive inverse distance weight and wind-topography methods were used.

Since the TRMM Satellite path was not able to catch the peak rainfall event defined by

Huang‘s method, we used the fly-over orbit that is closest to the debris flow event of

interest (orbit number 21129 on 17:51:49 2001-07-29 to 19:23:08 2001-07-29). The rain

gauge data within a 3 h envelope around the satellite passage time is used for the simple

kriging method.
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There is no wind information at each gauge stations. However, both radiosonde stations

in Nan-Too and Taichung show southeasterly winds during the typhoon passage, so we

assumed that this was the prevailing wind direction for our rain event.

4 Results

We first examine the triggering factor-rainfall. Figure 4 shows a (semi)variogram con-

structed using the rainfall data collected by the 30 gauges (using Huang‘s definition). The

spatial correlation of precipitation among these gauges is not strong. A general trend of

increasing variation with increasing distance seems to exist, but has strong irregularities.

The RMSE from ordinary kriging (OK) is 84.51 mm and the percent error (PE) is 22.68%.

The result was improved slightly by using co-kriging with the DEM, which resulted in a

RMSE of 80.52 mm and a PE of 21.61%.

The IDW with a = 2 was implemented and the error was found to be slightly higher than

that of OK with an RMSE equal to 91.49 mm and PE of 24.56%. The distance decay

parameter, a, other than 2, was tested as well. IDW with a = 3 yields the highest error

(RMSE = 99.98, PE = 26.84) and IDW with a = 1 gave the best result among all the

selected parameter values (RMSE = 79.76, PE = 21.41).

For the Adaptive inverse distance weighting method (AIDW), a range of distance decay

parameter, a, from 0.1 to 3, was used. AIDW outperforms OK, co-kriging, and IDWs with

RMSE of 72.66 mm and PE of 19.5%.

Fig. 3 Distribution of the 39 rain gauges in the central portion of Taiwan
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Before using artificial neural network to run the wind-topography model, we examined

the azimuthal angle dependency of the semivariogram. Figure 5 shows the directional

semivariograms for four hypothetical azimuthal angle intervals. Due to symmetry, direc-

tional semivariograms in the North direction were identical to those of the South direction.

Figure 5 shows that semivariance of rainfall is relatively small in southeasterly (north-

westerly) direction.

We further examine the correlation matrix of each azimuth angle of hypothetical wind

flux versus precipitation (results are shown in Table 1 (a) and (b), respectively). Since the

correlations are identical but with an opposite sign for directions 180 degrees out of phase,

only the results for four directions are shown. Both aspect (Asp) and Exp(0) show high

correlation with precipitation with significant P values in the direction of SE (and NW).

With the prevailing southeasterly wind during the typhoon passage, Asp and Exp(0) of

SE (or NW) are used as input to the WTNN along with elevation, Z, and SK results. After

training the network with 30 rain gauges, the error between predicted values and target

values converged and the weights of the connection nodes were obtained. These weights

were then used in the interpolation of rainfall over the 9 validation stations.

To demonstrate the utility of the WTNN method, a multi-linear regression (MLR)

model was performed. The regression coefficients are shown on Table 2. The MLR RMSE

is 84.82 mm and PE is 22.77%.

The RMSE of WTNN is 64.47 mm and PE is 17.31%. Convergence is achieved after

about 90 learning cycles. This result is slightly better than that of MLR. We made the
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Fig. 4 Semivariogram of the data for the 30 rain gauges

Fig. 5 Directional semivariograms of rain gauges
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assumption that this might be caused by low correlation between rainfall and elevation

(R = 0.20). The correlation value is lower than the range of 0.33–0.83 suggested by

Goovaerts (2000) who used monthly data in their study, whereas we use total event

rainfall.

We examined the sensitivity of the input parameters to the WTNN results by elimi-

nating parameters one at a time. The best performance was a WTNN without elevation as

an input. After eliminating elevation, the RMSE and PE drop to 57.51 mm and 15.44%,

respectively. Table 3 summarizes our results.

To perform the simple kriging method, we randomly generated points within a TRMM

2B31 pixel (4 · 4 km) and assigned the rainfall amount collected over a three hour

envelope to each point using AIDW. The differences between AIDW and TRMM 2B31 are

plotted and a semivariogram diagram was computed before the ordinary kriging pro-

cessing. The semivariogram closely fits the Gaussian’s model as shown in Fig. 6; therefore

a reliable prediction is expected. The simple kriging method shows improvement by

yielding a RMSE of 2.26 mm and a PE = 17.02%. The performance of SK method depends

strongly on the accuracy of the remote sensing information. The more accurate the remote

sensing information, the more accurate SK will be. Figure 7 compared results (by percent

error) for all methods used in this study.

We next examine the debris-flow susceptibility factors. Fuzzy based factors were ob-

tained from high resolution satellite imagery and a DEM (40 m · 40 m) from Aerial

Survey Office of the Forestry Bureau, Taiwan. High resolution satellite imagery data were

used to compute percent of vegetation cover (N2 from Eq. 16). GIS was used to process the

DEM and obtain slope (N1 from Eq. 15) and area of watersheds (N3 from Eq. 17). A soil

map (from the Aerial Survey Office of the Forestry Bureau, Taiwan) was used to determine

Table 3 RMSE and PE of different spatial interpolation techniques

Kriging Co-kriging IDW
(a = 1)

IDW
(a = 2)

IDW
(a = 3)

AIDW MLR WTNN WTNN
(W/out Z)

RMSE (mm) 81.51 80.52 79.76 91.49 99.98 72.66 84.82 64.47 57.51

PE (%) 22.68 21.61 21.41 24.56 26.84 19.51 22.77 17.31 15.44

Table 1 (a) Correlation matrix of Asp to precipitation; (b) Correlation matrix of Exp(0) to precipitation

N/S NE/SW E/W SE/NW

(a)

Y (R value) 0.332 0.142 0.494 0.490

Y (P value) 0.0391 0.3893 0.0014 0.0015

(b)

Y (R value) 0.327 0.025 0.405 0.531

Y (P value) 0.0425 0.8795 0.0106 0.0005

Y: Precipitation

Table 2 Coefficients of stepwise regression

Intercept Z Asp Exp(0)

397.013 �0.135 �0.951 �1.046
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soil properties in each watershed (N4 from Eq. 18). Delineated watersheds and streams in

Nan-Tou County are presented in Fig. 8. For cartographic purposes, we use a single point

in the downstream area of a watershed to represent a watershed area.

Inputs to self-organizing maps (SOM) are fuzzy based debris-flow susceptibility factors,

N1, N2, N3, N4, and rainfall triggering factors-rainfall from the wind-topography (WTNN)

model and simple kriging method. Output of SOM is degrees of hazard (DOH). SOM

provides great flexibility for decision makers to categorize degrees of risk by simply

adding output nodes. Three hazard levels (low, medium and high degrees of hazard) are

used as suggested by Soil and Water Conservation Bureau of Taiwan. Among all 187

debris flow watersheds in the study area, 16 watersheds were ranked as low hazard, 135

watersheds as medium hazard, and 36 watersheds as high hazard (Fig. 9). Watersheds were

identified by points in the downstream and the degrees of hazard were indicated by the

point symbols. All steps in the hazard assessment, including data loading, data analysis and

results display, were processed by ArcGIS. A decision maker can easily handle the process

using a GIS without dealing with different information systems.
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Fig. 6 The semivariogram of simple kriging method
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5 Conclusion and discussion

In order to fully utilize a GIS decision support system for the assessment of rainfall-

induced debris flow hazards, we combined watershed characteristics with rainfall esti-

mation based on a 1 km DEM, satellite pixel rainfall estimates (4 km pixels) and large

scale wind data. Three spatial interpolation techniques are compared. The AIDW method

provides better results than the inverse distance weight method by considering the distri-

bution characteristics of rain gauges and using distance decay parameters. Simple kriging

incorporates remote sensing data to minimize the variance between interpolated rainfall

values and satellite rainfall data. The wind-topography neural network method integrates

the interaction between wind and topography by adapting Antonic’s and Legovic (1999)

model in an artificial neural network. We demonstrated that the incorporation of

topographic and meteorological data outperforms traditional methods such as, kriging,

co-kriging, and IDWs. Simple kriging can also improve rainfall estimation by incorpo-

rating satellite rainfall information (TRMM 2B31) as local mean values. Among all the

methods, the wind-topography neural network method (without elevation information)

produced the best results by yielding minimum root mean square and percent errors of

RMSE = 57.51 and PE (%) = 15.44% respectively. Since the input variables are generated

by a high-resolution DEM (1 km · 1 km), a procedure for interpolating relatively coarse

resolution (4 km) satellite rainfall data into high-resolution cells for heavy rainfall events

was also demonstrated.

Self-organizing maps that incorporate susceptibility factors (slope, vegetative cover,

area of watershed, and soil type) and triggering factors (estimated rainfall by the WTNN

model) were used to estimate the hazard of debris flow at low, medium, and high levels.

Fig. 8 Delineated watersheds and streams
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This technique should be further developed for operational, near real-time debris flow

warning system.
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